Clawges, R., Vierling, K., Vierling L., and Rowell E. 2008. The use of airborn lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sensing of Environment. 112:2064-2073

Farrell, S.L., Collier, B.A., Skow, K.L., Long, A.M., Campomizzi A.J., Morrison, M.L., Hays K.B. and Wilkins R.N. 2013. Using LiDAR-derived vegetation metrics for high-resolution, species distribution models for conservation planning. Ecosphere. 4(3):42.

Gibson, L.A., Wilson B.A., Cahill, D.M., and Hill, J. 2004. Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach. Journal of Applied Ecology. 41:213-223.

Grimm, A. G. 2011. Lidar-Based of understory bird habitat in a tropical forest. MS Thesis. University of Michigan, Ann Arbor.

Hobson, K.A., Van Wilgenburg, S., Wassenaar, L.I., Moore, F., and Farrington J. 2007. Estimating origins of three species of Neotropical migrant songbirds at a gulf coast stopover site: combining stable isotope and GIS tools. The Condor. 109:256-267.

Jirinec, V.,Campos, B.R., and Johnson, M.D. 2011. Roosting behavior of migratory songbird on Jamaican coffee farms: landscape composition may affect delivery of an ecosystem service. Bird Conservation International. 1-9.

Lenton, S. Fa, J.E. and Perez del Val J. 2000. A simple non-parametric GIS model for predicting species distribution: endemic birds in Bioko Island, West Africa. Biodiversity and conservation. 9:869-885

Majka, D. 2005. Comparison of GIS-based modeling methods in predicting local avian distributions in the montane neotropics. In GIS-based modeling of avian distributions in a montane tropical forest. MS Thesis. Purdue Univerisity.

Majka, D. 2005. Modeling and Mapping Avian Distribution in a Montane Tropical Forest Using Topographic Variables Created From STRM Digital Elevation Model. In GIS-Based Modeling of Avian Distributions in a Montane Tropical Forest. MS Thesis. Purdue Univerisity.

Moreno, R., Zamora, R., Molina, J.R., Vasquez, A., and Herrera M.A., 2011. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecological informatics. 2:364-370.

Osborne, P.E., Alonso, J.C., and Bryant, R.G. 2001. Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. Journal of Applied Ecology. 38:458-471.

Papeş, M., Peterson, A.T., and Powel, G.N.V. 2012. Vegetation dynamics and avian seasonal migration: clues from remotely sensed vegetation indices and ecological niche modeling. Journal of biogeography. 39:652-664.

Petersen A.T., Ball, L.G., and Cohoon K.P., 2002. Predicitng distributions of Mexican birds using ecological niche modeling methods. Ibis. 144:27-32.



Swatantran, A., Dubayah, R., Goetz, S., Hofton, M., Betts, M.G., Sun, M., Simard, M., and Holmes, R. 2012. Mapping migratory bird prevalence using remote sensing data fusion. PLoS ONE 7(1): e28922. doi:10.1371/journal.pone.0028922

Vogeler, Jody.C., Hudak, A.T., Vierling, L.A.,  and Vierling, K.T., LiDAR-derived canopy structure architecture predicts Brown creeper occupancy of two western coniferous forest. The Condor. 115:614-622.